7. 
$$y = -5(\frac{1}{3})$$

8. 
$$y = -4(0.25)^{x+1}$$

9. 
$$y = 5\left(\frac{1}{2}\right)^x + 2$$

- 10. RADIOACTIVE DECAY The amount y (in grams) of a sample of iodine-131
  - a. Identify the initial amount of the substance.
  - b. What percent of the substance decays each day?

## APPLICATIONS

## IDENTIFYING FUNCTIONS Tell whether the function represents exponential growth or exponential decay.

**11.** 
$$f(x) = 4\left(\frac{3}{8}\right)^x$$
 **12.**  $f(x) = 10 \cdot 3^x$  **13.**  $f(x) = 8 \cdot 7^{-x}$  **14.**  $f(x) = 8 \cdot 7^x$ 

**12.** 
$$f(x) = 10 \cdot 3^x$$

13. 
$$f(x) = 8 \cdot 7^{-x}$$

**14.** 
$$f(x) = 8 \cdot 7^x$$

**15.** 
$$f(x) = 5\left(\frac{1}{8}\right)^{-x}$$
 **16.**  $f(x) = 3\left(\frac{4}{3}\right)^{x}$  **17.**  $f(x) = 8\left(\frac{2}{3}\right)^{x}$  **18.**  $f(x) = 5(0.25)^{-x}$ 

**16.** 
$$f(x) = 3\left(\frac{4}{3}\right)^x$$

**17.** 
$$f(x) = 8\left(\frac{2}{3}\right)^x$$

**18.** 
$$f(x) = 5(0.25)^{-x}$$

## MATCHING GRAPHS Match the function with its graph.

**19**. 
$$y = (0.25)^x$$

**20.** 
$$y = -3^{x-1} + 3$$

**20.** 
$$y = -3^{x-1} + 3$$
 **21.**  $y = -\left(\frac{1}{3}\right)^{x-1} + 3$ 

**22.** 
$$y = \left(\frac{1}{2}\right)^{x-1}$$

23. 
$$y = -(0.25)^3$$

**23.** 
$$y = -(0.25)^x$$
 **24.**  $y = (0.5)^x - 1$ 













GRAPHING FUNCTIONS Graph the function.

**25.** 
$$y = 3\left(\frac{1}{2}\right)^3$$

**26.** 
$$y = 2\left(\frac{1}{5}\right)^x$$

27. 
$$y = -2\left(\frac{1}{4}\right)^3$$

**28.** 
$$y = -5\left(\frac{1}{2}\right)^x$$

**29.** 
$$y = 4\left(\frac{1}{3}\right)^x$$

30. 
$$y = 5\left(\frac{1}{4}\right)^x$$

31. 
$$y = -3\left(\frac{2}{3}\right)^x$$

32. 
$$y = -5(0.75)^x$$

33. 
$$y = 3\left(\frac{3}{8}\right)^x$$

GRAPHING FUNCTIONS Graph the function. State the domain and range.

**34.** 
$$y = -\left(\frac{1}{2}\right)^x + 1$$

**35.** 
$$y = \left(\frac{2}{3}\right)^{x-1}$$

**36.** 
$$y = 4\left(\frac{1}{2}\right)^{x+1}$$

**37.** 
$$y = \left(\frac{1}{3}\right)^{x-2}$$

**38.** 
$$y = 2\left(\frac{1}{3}\right)^{x-1}$$

**39.** 
$$y = (0.25)^x + 3$$

**40.** 
$$y = -3\left(\frac{1}{3}\right)^{x-1}$$

**41.** 
$$y = \left(\frac{1}{3}\right)^x - 2$$

**42.** 
$$y = \left(\frac{2}{3}\right)^x - 1$$

WRITING MODELS In Exercises 43-45, write an exponential decay model that describes the situation.

- 43. STEREO SYSTEM You buy a stereo system for \$780. Each year t, the value V of the stereo system decreases by 5%.
- 44. BEVERAGES You drink a beverage with 120 milligrams of caffeine. Each hour h, the amount c of caffeine in your system decreases by about 12%.
- 45. MEDICINE An adult takes 400 milligrams of ibuprofen. Each hour h, the amount i of ibuprofen in the person's system decreases by about 29%.
- 46. S RADIOACTIVE DECAY One hundred grams of plutonium is stored in a container. The amount P (in grams) of plutonium present after t years can be modeled by this equation:

$$P = 100(0.99997)^t$$

How much plutonium is present after 20,000 years?

RECORD ALBUMS In Exercises 47–49, use the following information.

The number A (in millions) of record albums sold each year in the United States from 1982 to 1993 can be modeled by

$$A = 265(0.39)^{t}$$

where t represents the number of years since 1982.

- DATA UPDATE of Recording Industry Association of America data at www.mcdougalistell.com
- 47. Identify the initial amount, the decay factor, and the annual percent decrease
- 48. Graph the model.
- 49. Estimate when the number of records sold was 1 million.

You buy a new car for \$22,000. The value of the car decreases by 12.5% each year

- 50. Write an exponential decay model for the value of the car. Use the model to estimate the value after 3 years.
- 51. Graph the model.
- 52. Estimate when the car will have a value of \$8000.





